Estimation of Breathing Rate with Confidence Interval Using Single-Channel CW Radar

Author:

Nejadgholi I.1,Sadreazami H.1ORCID,Baird Z.2,Rajan S.2,Bolic M.1

Affiliation:

1. School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON, Canada

2. Department of Systems and Computer Engineering, Carleton University, Ottawa, ON, Canada

Abstract

Breathing rate monitoring using continuous wave (CW) radar has gained much attention due to its contact-less nature and privacy-friendly characteristic. In this work, using a single-channel CW radar, a breathing rate estimation method is proposed that deals with system nonlinearity of a single-channel CW radar and realizes a reliable breathing rate estimate by including confidence intervals. To this end, time-varying dominant Doppler frequency of radar signal, in the range of breathing rate, is extracted in time-frequency domain. It is shown through simulation and mathematical modeling that the average of the dominant Doppler frequencies over time provides an estimation of breathing rate. However, this frequency is affected by noise components and random body movements over time. To address this issue, the sum of these unwanted components is extracted in time-frequency domain, and from their surrogate versions, bootstrap resamples of the measured signal are obtained. Accordingly, a 95% confidence interval is calculated for breathing rate estimation using the bootstrap approach. The proposed method is validated in three different postures including lying down, sitting, and standing, with or without random body movements. The results show that using the proposed algorithm, estimation of breathing rate is feasible using single-channel CW radar. It is also shown that even in presence of random body movements, average of absolute error of estimation for all three postures is 1.88 breath per minute, which represents 66% improvement as compared to the Fourier transform-based approach.

Funder

Agencia de Innovación y Desarrollo de Andalucía

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3