Virtual Network Embedding: A Hybrid Vertex Mapping Solution for Dynamic Resource Allocation

Author:

Razzaq Adil1,Hidell Markus1,Sjödin Peter1

Affiliation:

1. School of ICT, KTH Royal Institute of Technology, 16440 Kista, Sweden

Abstract

Virtual network embedding (VNE) is a key area in network virtualization, and the overall purpose of VNE is to map virtual networks onto an underlying physical network referred to as a substrate. Typically, the virtual networks have certain demands, such as resource requirements, that need to be satisfied by the mapping process. A virtual network (VN) can be described in terms of vertices (nodes) and edges (links) with certain resource requirements, and, to embed a VN, substrate resources are assigned to these vertices and edges. Substrate networks have finite resources and utilizing them efficiently is an important objective for a VNE method. This paper analyzes two existing vertex mapping approaches—one which only considers if enough node resources are available for the current VN mapping and one which considers to what degree a node already is utilized by existing VN embeddings before doing the vertex mapping. The paper also proposes a new vertex mapping approach which minimizes complete exhaustion of substrate nodes while still providing good overall resource utilization. Experimental results are presented to show under what circumstances the proposed vertex mapping approach can provide superior VN embedding properties compared to the other approaches.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Virtual Network Embedding Based on the Degree and Clustering Coefficient Information;IEEE Access;2016

2. Heuristic Algorithm for Virtual Network Mapping Problem;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3