Image Multithreshold Segmentation Method Based on Improved Harris Hawk Optimization

Author:

Dong Weizhen1ORCID,Chen Yan1ORCID,Hu Xiaochun2

Affiliation:

1. School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China

2. School of Information and Statistics, Guangxi University of Finance and Economics, Nanning 530007, China

Abstract

In order to improve the accuracy and performance of traditional image threshold segmentation algorithm, this paper proposes a multithreshold segmentation method named improved Harris hawk optimization (IMHHO). Firstly, IMHHO adopts Tent map and elite opposition-based learning to initialize population and enhance the diversity. Secondly, IMHHO uses quadratic interpolation to generate new individuals and enhance the local search ability. Finally, IMHHO adopts improved Gaussian disturbance method to disturb optimal solution, which coordinates the local and global search ability. Then, the performance of IMHHO is tested based on 14 benchmark functions. In image segmentation, different algorithms are tested to compare the comprehensive performance based on Otsu and Renyi entropy. Experiments show that IMHHO performs better in the three kinds of benchmark functions; the segmentation effect is directly proportional to the number of thresholds; compared with other algorithms, IMHHO has better comprehensive performance.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference40 articles.

1. A Survey: Image Segmentation Techniques

2. Image Segmentation Techniques Overview

3. Survey of swarm intelligence optimization algorithms

4. Swarm intelligence-based optimisation algorithms: an overview and future research issues

5. Research on swarm intelligence optimization algorithm;W. Fei;The Journal of China Universities of Posts and Telecommunications,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3