Design, Fabrication, and Efficiency Study of a Novel Solar Thermal Water Heating System: Towards Sustainable Development

Author:

Khan M. Z. H.1,Al-Mamun M. R.1,Sikdar S.1,Halder P. K.2,Hasan M. R.1

Affiliation:

1. Department of Chemical Engineering, Jessore University of Science and Technology, Jessore 7408, Bangladesh

2. Department of Industrial and Production Engineering, Jessore University of Science and Technology, Jessore 7408, Bangladesh

Abstract

This paper investigated a novel loop-heat-pipe based solar thermal heat-pump system for small scale hot water production for household purposes. The effective use of solar energy is hindered by the intermittent nature of its availability, limiting its use and effectiveness in domestic and industrial applications especially in water heating. The easiest and the most used method is the conversion of solar energy into thermal energy. We developed a prototype solar water heating system for experimental test. We reported the investigation of solar thermal conversion efficiency in different seasons which is 29.24% in summer, 14.75% in winter, and 15.53% in rainy season. This paper also discusses the DC heater for backup system and the current by using thermoelectric generator which are 3.20 V in summer, 2.120 V in winter, and 1.843 V in rainy season. This solar water heating system is mostly suited for its ease of operation and simple maintenance. It is expected that such novel solar thermal technology would further contribute to the development of the renewable energy (solar) driven heating/hot water service and therefore lead to significant environmental benefits.

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy analysis of standalone hybrid active solar room heating system;Environmental Progress & Sustainable Energy;2024-09-09

2. Solar water heating: comprehensive review, critical analysis and case study;International Journal of Thermofluids;2023-11

3. Solar water heater – Solar thermal energy utilization;8TH BRUNEI INTERNATIONAL CONFERENCE ON ENGINEERING AND TECHNOLOGY 2021;2023

4. Performance and feasibility study of a new hybrid solar water heater integrated a small water turbine;Energy Storage;2022-01-17

5. Investigation of Efficiency of Flat Plate Collector Using CuO–H2O Nanofluid;Lecture Notes in Mechanical Engineering;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3