Short-Term Prediction Method of Solar Photovoltaic Power Generation Based on Machine Learning in Smart Grid

Author:

Liu Yuanyuan1ORCID

Affiliation:

1. Department of Mathematics, Lyuliang University, Luliang 033001, Shanxi, China

Abstract

In order to improve the accuracy of ultra short-term power prediction of the photovoltaic power generation system, a short-term photovoltaic power prediction method based on an adaptive k-means and Gru machine learning model is proposed. This method first introduces the construction process of the model and then builds a short-term photovoltaic power generation prediction model based on an adaptive k-means and Gru machine learning models. Then, the network structure and key parameters are determined through experiments, and the initial training set of the prediction model is selected according to the short-term photovoltaic power generation characteristics. And the adaptive k-means is used to cluster the initial training set and the photovoltaic power on the forecast day. The Gru model is trained on the initial training set data of each category, and the generated power is predicted in combination with the trained Gru model. Finally, considering three typical weather types, the proposed method is used for simulation analysis and compared with the other three traditional photovoltaic power generation single prediction models. The comparison results show that the proposed short-term photovoltaic power generation prediction method based on an adaptive k-means and Gru network has better effect, better robustness, and less error.

Funder

Science and Technology Innovation Group of Shanxi Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference30 articles.

1. Supervisory control of partially observed quantitative discrete event systems for fixed-initial-credit energy problem[J];P. Sasinee;IEICE - Transactions on Info and Systems,2017

2. Resolving the cosmological missing energy problem;G. Huey;Physical Review D – Particles and Fields,1998

3. Biosolutions to the energy problem

4. Analysis of the zero‐point energy problem in classical trajectory simulations

5. Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3