Seepage Monitoring Models Study of Earth-Rock Dams Influenced by Rainstorms

Author:

Qiu Jianchun123,Zheng Dongjian123,Zhu Kai23

Affiliation:

1. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China

2. National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China

3. College of Water-Conservancy and Hydropower, Hohai University, Nanjing 210098, China

Abstract

For earth-rock dams influenced by rainstorms, seepage status monitoring is very important and provides the basis for the safe and effective operation of earth-rock dams. The most influential factors concerning the seepage of earth-rock dams are the reservoir water level, precipitation, temperature, and timeliness, and the influence of the reservoir water level and precipitation on the seepage of an earth-rock dam exhibits hysteretic effects. The reservoir water level of an earth-rock dam abruptly increases and may exceed the historically highest water level, therein causing new deformations of the earth-rock dam or even plastic deformation. Thus, the permeability coefficient for parts of an earth-rock dam changes, and we present the exceeded water level factor. Considering the complexity of the seepage monitoring of earth-rock dams, based on the hysteretic reservoir water level and precipitation, temperature, timeliness, and the exceeded water level factor, a statistical model based on an explicit function and an artificial wavelet neural network model based on an implicit function are established. Based on these two models, an integrated monitoring model based on maximum entropy theory is established. At the end of this paper, three monitoring models are used for the seepage monitoring of a measuring point of an earth-rock dam influenced by rainstorms, and the results show that the three monitoring models obtain satisfactory predication accuracy.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3