Exploration of CT Images Based on the BN-U-net-W Network Segmentation Algorithm in Glioma Surgery

Author:

Yu Yongmei1ORCID,Du Zhaofeng2ORCID,Yuan Changxin3ORCID,Li Jian1ORCID

Affiliation:

1. Department of Radiology, Jining First People’s Hospital, No. 6 Jiankang Road, Jining, Shandong 272000, China

2. Department of Imaging, Zaozhuang Traditional Chinese Medicine Hospital, No. 2666 Taihangshan South Road,Xuecheng District, Zaozhuang 277000, Shandong, China

3. Military Sursery, Zaozhuang Traditional Chinese Medicine Hospital, No. 2666 Taihangshan South Road,Xuecheng District, Zaozhuang, Shandong, China

Abstract

This study aimed to explore the application value of computed tomography (CT) imaging features based on the deep learning batch normalization (batch normalization, BN) U-net-W network image segmentation algorithm in evaluating and diagnosing glioma surgery. 72 patients with glioma who were admitted to hospital were selected as the research subjects. They were divided into a low-grade group (grades I-II, N = 27 cases) and high-grade group (grades III-IV, N = 45 cases) according to postoperative pathological examination results. The CT perfusion imaging (CTPI) images of patients were processed by using the deep learning-based BN-U-net-W network image segmentation algorithm. The application value of the algorithm was comprehensively evaluated by comparing the average Dice coefficient, average recall rate, and average precision of the BN-U-net-W network image segmentation algorithm with the U-net and BN-U-net network algorithms. The results showed that the Dice coefficient, recall, and precision of the BN-U-net-W network were 86.31%, 88.43%, and 87.63% respectively, which were higher than those of the U-net and BN-U-net networks, and the differences were statistically significant ( P < 0.05 ). Cerebral blood flow (CBF), cerebral blood volume (CBV), and capillary permeability (PMB) in the glioma area were 56.85 mL/(min·100 g), 18.03 mL/(min·100 g), and 8.57 mL/100 g, respectively, which were significantly higher than those of normal brain tissue, showing statistically significant differences ( P < 0.05 ). The mean transit time (MTT) difference between the two was not statistically significant ( P > 0.05 ). The receiver operating characteristic (ROC) curves of CBF, CBV, and PMB in CTPI parameters of glioma had area under the curve (AUC) of 0.685, 0.724, and 0.921, respectively. PMB parameters were significantly higher than those of CBF and CVB, and the differences were statistically obvious ( P < 0.05 ). It showed that the BN-U-net-W network model had a better image segmentation effect, and CBF, CBV, and PMB showed better sensitivity in diagnosing glioma tissue and normal brain tissue and high-grade and low-grade gliomas, among which PBM showed the highest predictability.

Publisher

Hindawi Limited

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3