Regional Language Speech Recognition from Bone-Conducted Speech Signals through Different Deep Learning Architectures

Author:

Putta Venkata Subbaiah1ORCID,Selwin Mich Priyadharson A.1,Sundramurthy Venkatesa Prabhu2ORCID

Affiliation:

1. Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, India

2. Center of Excellence for Bioprocess and Biotechnology, Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia

Abstract

Bone-conducted microphone (BCM) senses vibrations from bones in the skull during speech to electrical audio signal. When transmitting speech signals, bone-conduction microphones (BCMs) capture speech signals based on the vibrations of the speaker’s skull and have better noise-resistance capabilities than standard air-conduction microphones (ACMs). BCMs have a different frequency response than ACMs because they only capture the low-frequency portion of speech signals. When we replace an ACM with a BCM, we may get satisfactory noise suppression results, but the speech quality and intelligibility may suffer due to the nature of the solid vibration. Mismatched BCM and ACM characteristics can also have an impact on ASR performance, and it is impossible to recreate a new ASR system using voice data from BCMs. The speech intelligibility of a BCM-conducted speech signal is determined by the location of the bone used to acquire the signal and accurately model phonemes of words. Deep learning techniques such as neural network have traditionally been used for speech recognition. However, neural networks have a high computational cost and are unable to model phonemes in signals. In this paper, the intelligibility of BCM signal speech was evaluated for different bone locations, namely the right ramus, larynx, and right mastoid. Listener and deep learning architectures such as CapsuleNet, UNet, and S-Net were used to acquire the BCM signal for Tamil words and evaluate speech intelligibility. As validated by the listener and deep learning architectures, the Larynx bone location improves speech intelligibility.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3