Effects of Torreya grandis Kernel Oil on Lipid Metabolism and Intestinal Flora in C57BL/6J Mice

Author:

Xiao Minghui1ORCID,Huang Minjie2ORCID,Huan Weiwei3ORCID,Dong Jie2ORCID,Xiao Jianbo4ORCID,Wu Jiasheng1,Wang Deqian2ORCID,Song Lili1ORCID

Affiliation:

1. The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China

2. Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China

3. College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China

4. Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain

Abstract

Background. Recent experimental studies have shown that vegetable oil supplementation ameliorates high-fat diet- (HFD-) induced hyperlipidemia and oxidative stress in mice via modulating hepatic lipid metabolism and the composition of the gut microbiota. The aim of this study was to investigate the efficacy of the Torreya grandis kernel oil (TKO) rich in unpolysaturated fatty acid against hyperlipidemia and gain a deep insight into its potential mechanisms. Methods. Normal mice were randomly divided into three groups: ND (normal diet), LO (normal diet supplement with 4% TKO), and HO (normal diet supplement with 8% TKO). Hyperlipidemia mice were randomly divided into two groups: HFN (normal diet) and HFO (normal diet supplement with 8% TKO). Blood biochemistry and histomorphology were observed; liver RNA-seq, metabolomics, and gut 16S rRNA were analyzed. Results. Continuous supplementation of TKO in normal mice significantly ameliorated serum total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and free fatty acid (FFA) accumulation, decreased blood glucose and malondialdehyde (MDA), and enhanced superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) levels. According to GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, most differentially expressed genes (DEGs) were significantly enriched in the biosynthesis of unsaturated fatty acid pathways, and significantly changed metabolites (SCMs) might be involved in the metabolism of lipids. High-dose TKO improved gut alpha diversity and beta diversity showing that the microbial community compositions of the five groups were different. Conclusion. Supplementation of TKO functions in the prevention of hyperlipidemia via regulating hepatic lipid metabolism and enhancing microbiota richness in normal mice. Our study is the first to reveal the mechanism of TKO regulating blood lipid levels by using multiomics and promote further studies on TKO for their biological activity.

Funder

111 project

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3