Performance Analysis of Hydrodynamic Pressure Finger Seal by Wall Slip Effect

Author:

Zhang Yan-chao1ORCID,Wang Ting1,Zhang Dong-ya1,Yin Ming-hu1ORCID,Cui Ya-hui1,Chen Ling-ping1,Du Peng-fei2,Wang Rui3

Affiliation:

1. School of Mechanical Instrumental Engineering, Xi’an University of Technology, Xian 710048, China

2. China Aerospace Science and Technology Corporation, Xi’an Aerospace Propulsion Test Technique Institute, Xi’an 710100, China

3. Shaanxi Ruihong Mechanical and Electrical Technology Co., Ltd., Xi’an 710611, China

Abstract

Hydrodynamic pressure finger seal1 is a kind of flexible noncontact dynamic sealing device with good application potential. It relies on the ultrathin dynamic pressure film effect produced by the rotation of finger boot and rotor to realize the design of noncontact and low leakage and is suitable for high-speed dynamic sealing parts. However, under the high-speed condition, there is a wall slip effect when the gas flows in the microchannel with a thickness of about 10 μm between the finger boot and rotor, which affects the stability of the dynamic pressure air film and also affects the change of the air film bearing capacity and the leakage rate of the finger seal. Therefore, based on the theory of microflow, the interstitial flow field model of finger seal under fluid dynamic pressure is established, and its slip effect under high speed is analyzed. The results show that the slip ratio of the sealing medium temperature of 500°C and 0.1 MPa conditions reached 27.28%. When considering the slip effect of the wall surface generated by the gas under shear driving, the gas film bearing capacity decreased and the leakage rate increased. When the pressure difference between the upper and lower reaches of the seal is 0.1 MPa, and the rotor line speed is 400 m/s, the gas film bearing capacity decreases by 17.39% after considering the slip effect of the wall surface, and the leakage rate increases by 14.06%. The results provide an important reference for the structural design and leakage control of hydrodynamic finger seal.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3