Development and Application of Equipment for Anchor Cable with C-Shaped Tube Tension-Shear Test System

Author:

Shan Renliang1ORCID,Liang Chen1,Liu Weijun1ORCID,Jiang Yuzhao1,Li Tianwen1

Affiliation:

1. School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China

Abstract

Based on the phenomenon of serious tensile-shear failure of bolts and cables, domestic and foreign scholars’ research on the mechanical properties of bolts and cables has gradually changed from pure tensile to tensile-shear performance. To reduce the long-term bolt and cable breakage accidents in deep soft rock tunnels in coal mines, we independently developed a new type of support material—anchor cable with C-shaped tube and a corresponding tensile-shear test system. The system parameters are set through theoretical derivation, and the three main structures of the test system are designed with ANSYS: shear box, vertical loading reaction frame, and horizontal loading reaction frame. The numerical simulation results show that when the thickness of the shear box steel plate is 20 mm, the maximum strain is about 2.7‰. When the diameters of the vertical column and the horizontal bar are 220 mm and 80 mm, respectively, the maximum strains of the column and the horizontal bar are about 0.17‰ and 0.04‰, respectively. The strength and deformation of the three main structures meet the design requirements. The developed test system was tested on-site. The test results show that the system can perform tensile test and two different modes of the double shear test. The main structure has no obvious deformation during the test, meeting the design requirements. In addition, the rational design of the shear box eliminates the error caused by the shear block. The results show that the shear resistance of anchor cable with C-shaped tube is better than that of pure anchor cables. The research results can provide a reference for developing other similar test systems.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3