No Need for a Body Model: Positive Velocity Feedback for the Control of an 18-DOF Robot Walker

Author:

Schmitz Josef1,Schneider Axel1,Schilling Malte1,Cruse Holk1

Affiliation:

1. Department for Biological Cybernetics, Faculty of Biology, University of Bielefeld, P.O. Box 10 01 31, D-33501 Bielefeld, Germany

Abstract

In a multilegged walking robot several legs usually have ground contact and thereby form a closed kinematic chain. The control of such a system is generally assumed to require the explicit calculation of the body kinematics. Such a computation requires knowledge concerning all relevant joint angles as well as the segment lengths. Here, we propose a biologically inspired solution that does not need such a body model. This is done by using implicit communication through the body mechanics (embodiment) and a local positive velocity feedback strategy (LPVF) on the single joint level. In this control scheme the locally measured joint velocity of an elastic joint is fed into the same joint during the next time step to maintain the movement. At the same time, an additional part of this joint controller observes the mechanical joint power to confine the positive feedback. This solution does not depend on changes of the geometry, e.g. length of individual segments, and allows for a simple solution of negotiation of curves. The principle is tested in a dynamics simulation on a six-legged walker and, for the first time, also on a real robot.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3