Separation of Levofloxacin from Industry Effluents Using Novel Magnetic Nanocomposite and Membranes Hybrid Processes

Author:

Ullah Azmat1,Zahoor Muhammad1ORCID,Alam Sultan1,Ullah Riaz2ORCID,Alqahtani Ali S.23ORCID,Mahmood Hafiz Majid4ORCID

Affiliation:

1. Department of Chemistry, University of Malakand, Chakdara, Dir Lower, 18800 KPK, Pakistan

2. Medicinal, Aromatic and Poisonous Plants Research Center (MAPRC), College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia

3. Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia

4. Department of Pharmacology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia

Abstract

Magnetic carbon nanocomposite (MCN) was synthesized from waste biomass precursor, pineapple. The prepared adsorbent was characterized using different instrumental techniques and was used to remove levofloxacin (LEV) from effluents. The maximum sorption of LEV was observed at pH 7. Pseudo-2nd-order (PSO) kinetic was found to be the best model that fits well the adsorption kinetics data. For Langmuir adsorption isotherm, the R2 value was higher as compared with other isotherms. The Van’t Hoff equation was used for thermodynamic parameters determinations. ΔS° (standard entropy) was positive and ΔG° (standard Gibb’s free energy) was negative: -0.37, -1.81, and -3.73 kJmol−1 corresponding to 25, 40, and 60°C. The negative values of ΔG° at different temperatures stipulate that the adsorption of LEV was spontaneous in nature and adsorbent has a considerable affinity for LEV molecules. The MCN was then utilized in hybrid way by connecting with ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO) membranes in series and as a result enhanced permeate fluxes were observed. The percent retention of LEV molecules was lower with UF membrane and with NF it was 96%, while it was 100% with RO. For MCN/UF and MCN/NF systems, improvement in % retention was recorded.

Funder

King Saud University

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3