Fenofibrate Improved Interstitial Fibrosis of Renal Allograft through Inhibited Epithelial-Mesenchymal Transition Induced by Oxidative Stress

Author:

Wang Yishu1,Pang Lei2ORCID,Zhang Yanghe1,Lin Jiahui1,Zhou Honglan3ORCID

Affiliation:

1. Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021 Jilin, China

2. Department of Anesthesiology, The First Hospital of Jilin University, Changchun, 130021 Jilin, China

3. Department of Urology, The First Hospital of Jilin University, Changchun, 130021 Jilin, China

Abstract

The best treatment for end-stage renal disease is renal transplantation. However, it is often difficult to maintain a renal allograft healthy for a long time following transplantation. Interstitial fibrosis and tubular atrophy (IF/TA) are significant histopathologic characteristics of a compromised renal allograft. There is no effective therapy to improve renal allograft function once IF/TA sets in. Although there are many underlying factors that can induce IF/TA, the pathogenesis of IF/TA has not been fully elucidated. It has been found that epithelial-mesenchymal transition (EMT) significantly contributes to the development of IF/TA. Oxidative stress is one of the main causes that induce EMT in renal allografts. In this study, we have used H2O2 to induce oxidative stress in renal tubular epithelial cells (NRK-52e) of rats. We also pretreated NRK-52e cells with an antioxidant (N-acetyl L-cysteine (NAC)) 1 h prior to the treatment with H2O2. Furthermore, we used fenofibrate (a peroxisome proliferator-activated receptor α agonist) to treat NRK-52e cells and a renal transplant rat model. Our results reveal that oxidative stress induces EMT in NRK-52e cells, and pretreatment with NAC can suppress EMT in these cells. Moreover, fenofibrate suppresses fibrosis by ameliorating oxidative stress-induced EMT in a rat model. Thus, fenofibrate may effectively prevent the development of fibrosis in renal allograft and improve the outcome.

Funder

Natural Science Foundation of Jilin Province

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3