Development of a Wireless Health Monitoring System for Measuring Core Body Temperature from the Back of the Body

Author:

Wei Qun1ORCID,Park Hee-Joon1,Lee Jyung Hyun2ORCID

Affiliation:

1. Department of Biomedical Engineering, School of Medicine, Keimyung University, Daegu, Republic of Korea

2. Department of Biomedical Engineering, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea

Abstract

In this paper, a user-friendly and low-cost wireless health monitoring system that measures skin temperature from the back of the body for monitoring the core body temperature is proposed. To measure skin temperature accurately, a semiconductor-based microtemperature sensor with a maximum accuracy of ±0.3°C was chosen and controlled by a high-performance/low-power consumption Acorn-Reduced Instruction Set Computing Machine (ARM) architecture microcontroller to build the temperature measuring device. Relying on a 2.4 GHz multichannel Gaussian frequency shift keying (GFSK) RF communication technology, up to 100 proposed temperature measuring devices can transmit the data to one receiver at the same time. The shell of the proposed wireless temperature-measuring device was manufactured via a 3D printer, and the device was assembled to conduct the performance tests and in vivo experiments. The performance test was conducted with a K-type temperature sensor in a temperature chamber to observe temperature measurement performance. The results showed an error value between two devices was less than 0.1°C from 25 to 40°C. For the in vivo experiments, the device was attached on the back of 10 younger male subjects to measure skin temperature to investigate the relationship with ear temperature. According to the experimental results, an algorithm based on the curve-fitting method was implemented in the proposed device to estimate the core body temperature by the measured skin temperature value. The algorithm was established as a linear model and set as a quadratic formula with an interpolant and with each coefficient for the equation set with 95% confidence bounds. For evaluating the goodness of fit, the sum of squares due to error (SSE), R-square, adjusted R-square, and root mean square error (RMSE) values were 33.0874, 0.0212, 0.0117, and 0.3998, respectively. As the experimental results have shown, the mean value for an error between ear temperature and estimated core body temperature is about ±0.19°C, and the mean bias is 0.05 ± 0.14°C when the subjects are in steady status.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Miniaturized Antenna Design for Wireless and Powerless Surface Acoustic Wave Temperature Sensors;Sensors;2024-08-24

2. A Low-Cost Wearable Device to Estimate Body Temperature Based on Wrist Temperature;Sensors;2024-03-18

3. A Comprehensive Review on Wireless Healthcare Monitoring: System Components;IEEE Access;2024

4. Wearable Sensors Based Human Core Body Temperature Computing Method;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14

5. Occupant-centered indoor environmental quality management: Physiological response measuring methods;Building and Environment;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3