Prediction of “Aggregation-Prone” Peptides with Hybrid Classification Approach

Author:

Liu Bo1,Zhang Wenyi2,Jia Longjia2,Wang Jianan2,Zhao Xiaowei2,Yin Minghao2

Affiliation:

1. School of Physical Education, Northeast Normal University, Changchun 130117, China

2. School of Computer Science and Information Technology, Northeast Normal University, Changchun 130117, China

Abstract

Protein aggregation is a biological phenomenon caused by misfolding proteins aggregation and is associated with a wide variety of diseases, such as Alzheimer’s, Parkinson’s, and prion diseases. Many studies indicate that protein aggregation is mediated by short “aggregation-prone” peptide segments. Thus, the prediction of aggregation-prone sites plays a crucial role in the research of drug targets. Compared with the labor-intensive and time-consuming experiment approaches, the computational prediction of aggregation-prone sites is much desirable due to their convenience and high efficiency. In this study, we introduce two computational approaches Aggre_Easy and Aggre_Balance for predicting aggregation residues from the sequence information; here, the protein samples are represented by the composition ofk-spaced amino acid pairs(CKSAAP). And we use the hybrid classification approach to predict aggregation-prone residues, which integrates the naïve Bayes classification to reduce the number of features, and two undersampling approaches EasyEnsemble and BalanceCascade to deal with samples imbalance problem. The Aggre_Easy achieves a promising performance with a sensitivity of 79.47%, a specificity of 80.70% and a MCC of 0.42; the sensitivity, specificity, and MCC of Aggre_Balance reach 70.32%, 80.70% and 0.42. Experimental results show that the performance of Aggre_Easy and Aggre_Balance predictor is better than several other state-of-the-art predictors. A user-friendly web server is built for prediction of aggregation-prone which is freely accessible to public at the website.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3