Parallelization of Eigenvalue-Based Dimensional Reductions via Homotopy Continuation

Author:

Bi Size1,Han Xiaoyu1,Tian Jing1,Liang Xiao1,Wang Yang1,Huang Tinglei1

Affiliation:

1. Institute of Electronics, Chinese Academy of Sciences, North Fourth Ring Road West 98, Beijing 100190, China

Abstract

This paper investigates a homotopy-based method for embedding with hundreds of thousands of data items that yields a parallel algorithm suitable for running on a distributed system. Current eigenvalue-based embedding algorithms attempt to use a sparsification of the distance matrix to approximate a low-dimensional representation when handling large-scale data sets. The main reason of taking approximation is that it is still hindered by the eigendecomposition bottleneck for high-dimensional matrices in the embedding process. In this study, a homotopy continuation algorithm is applied for improving this embedding model by parallelizing the corresponding eigendecomposition. The eigenvalue solution is converted to the operation of ordinary differential equations with initialized values, and all isolated positive eigenvalues and corresponding eigenvectors can be obtained in parallel according to predicting eigenpaths. Experiments on the real data sets show that the homotopy-based approach is potential to be implemented for millions of data sets.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3