A BTM-Based Adaptive Objectionable Short Text Filtering Framework

Author:

Cui Dong1ORCID,Wen Qiaoyan1,Zhang Hua1ORCID,Li Wenmin1ORCID,Shi Yijie1,Zhou Yingyu1,Zhang Lei2

Affiliation:

1. The State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. Information Technology Department, Minsheng Bank, Beijing, 101300, China

Abstract

Many methods are available for objectionable text filtering, such as URL-based filtering, keyword-based filtering, and intelligence-based analysis filtering approaches. URL-based filtering cannot filter the contents of objectionable short text. Keyword-based filtering faces the overblocking issue. Intelligence-based analysis filtering is inefficient and ineffective when filtering objectionable short text. In this paper, a biterm topic modelling- (BTM-) based adaptive objectionable short text filtering framework is proposed. We propose a feature extraction algorithm for objectionable short text and establish a sensitive word feature dataset using the descriptions of applications on the Internet. Then, we construct a judgment standard to automatically select the K value of the BTM topic model that can induce self-adaptation. The feature dataset constructed in this paper can effectively reflect the characteristics of objectionable short text. The proposed filtering framework can effectively identify objectionable short text and has a higher filtering rate than other approaches.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference22 articles.

1. MyersK. S.Wikimmunity: fitting the communications decency act to Wikipedia20061Social Science Electronic Publishing

2. A High-Performance URL Lookup Engine for URL Filtering Systems

3. Malicious URL filtering — A big data application

4. Beyond keyword filtering for message and conversation detection;D. B. Skillicorn,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3