A Short-Term Power Output Forecasting Model Based on Correlation Analysis and ELM-LSTM for Distributed PV System

Author:

Yongsheng Deng1,Fengshun Jiao1,Jie Zhang1,Zhikeng Li2ORCID

Affiliation:

1. Shenzhen Power Supply Co., Ltd., Shenzhen 518033, China

2. China Energy Engineering Group Guangdong Electric Power Design Institute Co. Ltd., Guangzhou, China

Abstract

Accurate short-term power output forecasting results are conducive to reducing the scheduling difficulty of grid-connected operation of distributed photovoltaic (PV) systems, thus improving the safety and stability of power grid operation. In this paper, a one-day-ahead short-term power output forecasting model based on correlation analysis and combination algorithms for distributed PV system is proposed to solve the problems within the current methods. Firstly, the basic information of distributed PV system is introduced, and the main influence factors affecting the power output of distributed PV system are determined. Secondly, the influence factors with higher correlation with PV output are selected by Spearman rank-order correlation coefficient (SROCC) analysis in multiple timescales. Then, based on the multimodel univariate extreme learning machine (ELM) submodel and the single-model multivariate long short-term memory (LSTM) submodel, the ELM-LSTM model is established. The case study analysis based on the actual data indicates that the ELM-LSTM forecasting model proposed in this paper has higher forecasting accuracy than the traditional forecasting methods.

Funder

Science and Technology Research Program of Shenzhen Power Supply Co., Ltd.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3