LRS Bianchi Type-I String Cosmological Models in f Q Gravity

Author:

Kumar Mukesh1,Singh Manvinder2,Bajaj Mohit345,Kotb Hossam6ORCID,Hermann Djeudjo Temene7ORCID

Affiliation:

1. Department of Mathematics, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, Uttar Pradesh, India

2. Department of Applied Science, G.L. Bajaj Institute of Technology and Management, Greater Noida 201306, India

3. Department of Electrical Engineering, Graphic Era (Deemed to be University), Dehradun 248002, India

4. Graphic Era Hill University, Dehradun 248002, India

5. Applied Science Research Center, Applied Science Private University, Amman 11937, Jordan

6. Department of Electrical Power and Machines, Faculty of Engineering, Alexandria University, Alexandria, Egypt

7. Electrical and Electronic Systems Laboratory, Department of Physics, Universitéde Yaoundé I, Yaoundé, Cameroon

Abstract

In the current study, we studied a f Q -gravitational, anisotropic, locally rotationally symmetric (LRS), Bianchi type-I spacetime universe. We have adopted the freely chosen function f Q = Q + α Q , where α is a model-free parameter. We assumed that the universe is filled with dusty string fluid and that the shear scalar ( σ ) and the expansion scalar ( θ ) are proportional to each other in order to solve field equations for the average Hubble parameter ( H ). The resultant Hubble function has been fitted with observational datasets H z and SNe Ia datasets of apparent magnitude m z in order to obtain the best fit values for the cosmological parameters. Utilizing these best fit values throughout the analysis, many cosmic phenomena are examined. We have investigated cosmographic coefficients such as H , q , j , a n d s to see if an accelerated transit phase dark energy model of the cosmos exists. Also, we have classified the dark energy models that are explored using Om diagnostic analysis; our universe model is a quintessential dark energy model. The age of the universe as it exists right now has been roughly calculated by the model.

Publisher

Hindawi Limited

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3