Lamb Waves in a Functionally Graded Composite Plate with Nonintegral Power Function Volume Fractions

Author:

Cao Xiaoshan12,Qu Zhen1,Shi Junping1,Ru Yan1

Affiliation:

1. Department of Engineering Mechanics, School of Civil Engineering and Architecture, Xi’an University of Technology, Xi’an 710048, China

2. State Key Laboratory for Strength and Vibration of Mechanical Structure, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

An analytical modelling is carried out to determine the Lamb wave’s propagation behavior in a thermal stress relaxation type functionally graded material (FGM) plate, which is a composite of two kinds of materials. The mechanical parameters depend on the volume fractions, which are nonintegral power functions, and the gradient coefficient is the power value. Based on the theory of elastodynamics, differential equations with variable coefficients are established. We employ variable substitution for theoretical derivations to solve the ordinary differential equations with variable coefficients using the Taylor series. The numerical results reveal that the dispersion properties in some regions are changed by the graded property, the phase velocity varies in a nonlinear manner with the gradient coefficient, nondispersion frequency exists in the first mode, and the set of cutoff frequencies is a union of two series of approximate arithmetic progressions. These results provide theoretical guidance not only for the experimental measurement of material properties but also for their nondestructive testing.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lamb Waves in Functionally Graded and Laminated Composites;Journal of Theoretical and Computational Acoustics;2020-02-12

2. Manufacture of Locally Reinforced Composite Discs by Casting in the Alternating Electromagnetic Field;Advances in Materials Science and Engineering;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3