Fatigue Characteristics and Numerical Modelling Prosthetic for Chopart Amputation

Author:

Abbas Saif M.1,Kubba Ammar I.1ORCID

Affiliation:

1. Prosthetics and Orthotics Engineering Department, College of Engineering, Al-Nahrain University, Baghdad, Iraq

Abstract

This research is looking for three laminated composite material groups. These three groups were utilized in experimental investigation to find their mechanical properties. These properties have been used to design and manufacture a socket for a partial foot prosthesis using an ANSYS model. This socket was manufactured with a vacuum pressure device to improve its properties. The socket composite material was tested for tensile and fatigue properties; then, its results were used in the ANSYS model. The composite material matrix was laminated in an 80 : 20 ratio, and there were three types of reinforcement lamination material (Perlon, glass fiber, and carbon fiber). The mechanical property results of these tests were found as follows: using only-Perlon reinforcement, the properties are σ y = 33.6 MPa , σ ult = 35.6 MPa , and modulus of elasticity = 1.03 GPa ; using (3Perlon +2carbon fiber +3perlon) layers, the properties were σ y = 65.5 MPa , σ ult = 92.5 MPa , and modulus of elasticity = 1.99 GPa ; and using (3Perlon + 2 glass fiber + 3perlon) layers, the results were σ y = 40 MPa , σ ult = 46.6 MPa , and modulus of elasticity = 1.4 GPa . The ANSYS model used the boundary condition from the measured contact pressure between the socket and the patient’s stump. The MatScan (F-socket) pressure sensor utilized these interface pressure measurements. The maximum values for the pressure were found as follows: 190 kPa and 164 kPa, which are recorded in the posterior and lateral locations, respectively. The calculated factor of safety for the prosthesis that has been made from a selected composite material with the following layers (3 Perlon+2 carbon fiber+3 Perlon) is 1.037 which is safe for design prosthetic applications. From this study, more prosthetic designs can be modelled and manufactured using this approach. Prosthetics and orthotics are usually custom-made for each patient according to its specific requirements. So, it will be very helpful to find a procedure to analyze the prosthetics before manufacturing it.

Funder

Al-Nahrain University

Publisher

Hindawi Limited

Subject

Computer Science Applications,General Engineering,Modelling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Structural testing of lower-limb prosthetic sockets: A systematic review;Medical Engineering & Physics;2022-01

2. Single-Case study: Biomechanical evaluation of a modified clamshell prosthesis in the chopart amputee;2021 13th Biomedical Engineering International Conference (BMEiCON);2021-11-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3