Affiliation:
1. Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, 215008, Suzhou, Jiangsu Province, China
2. The Experimental Center and Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, 215004, Suzhou, Jiangsu Province, China
Abstract
Background. The radioresistance of glioma stem cells (GSCs) is related to some microRNAs (miRs) generated by radiation. This study aimed to investigate the effects of miR-17-5p and miR-130b-3p on the radiosensitivity of GSCs. Methods. miR-17-5p and miR-130b-3p expressions in SU3 and SU3-5R cells were determined. SU3 cells transfected with miR-17-5p or miR-130b-3p mimics or inhibitors were used to determine cell viability after irradiation as well as to examine changes of supernatant glucose, intracellular glucose 6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6-PGDH), reduced nicotinamide adenine dinucleotide phosphate (NADPH), reduced glutathione (GSH), glutathione peroxidase (GSH-Px), phosphatase and tensin homolog (PTEN), hypoxia-inducible factor-1α (HIF-1α), glucose transporter (GLUT)-1/3, protein kinase B (AKT), and p-AKT levels. The target gene of the two miRs was verified by luciferase reporter gene assay. Results. miR-17-5p and miR-130b-3p expressions in the radiation-resistant SU3-5R cells or 8 Gy irradiation-treated SU3 cells were high. After transfection of SU3 cells with miR-17-5p or miR-130b-3p mimics, cell viability, intracellular HIF-1α, GLUT-1/3, AKT, and p-AKT protein expressions, and intracellular G6PDH, 6-PGDH, NADPH, GSH-Px, and GSH levels were high, whereas intracellular PTEN expression and supernatant glucose were low. The opposite effects were also observed in the two miR inhibitors-transfected SU3 cells. Further study confirmed that miR-17-5p or miR-130b-3p could directly bind with the PTEN. Conclusion. Radiation-induced miR-17-5p and miR-130b-3p might cause the radioresistance of GSCs, and the mechanisms were associated with the enhancement of antioxidant production, which was from the increments of AKT/HIF-1α signaling pathway-controlled glucose transmembrane transport and phosphopentose metabolism by targeting PTEN.
Funder
Science and Technology Program of Suzhou
Subject
Cancer Research,Cell Biology,Molecular Medicine,General Medicine,Pathology and Forensic Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献