Identification of Immune-Related lncRNAs for Predicting Prognosis and Immune Landscape Characteristics of Uveal Melanoma

Author:

Chen Wei1,Yan Liying1,Long Bo1,Lin Li1ORCID

Affiliation:

1. Department of Ophthalmology, Suining Central Hospital, No. 127, West Desheng Road, Chuanshan District, Suining 629000, Sichuan Province, China

Abstract

Immune-related genes and long noncoding RNAs (lncRNAs) have a significant impact on the prognostic value and immunotherapeutic response of uveal melanoma (UM). Therefore, we tried to develop a prognostic model on the basis of irlncRNAs for predicting prognosis and response on immunotherapy of UM patients. We identified 1,664 immune-related genes and 2,216 immune-related lncRNAs (irlncRNAs) and structured a prognostic model with 3 prognostic irlncRNAs by co-expression analysis, univariable Cox, LASSO, and multivariate Cox regression analyses. The Kaplan–Meier analysis indicated that patients in the high-risk group had a shorter survival time than patients in the low-risk group. The ROC curves demonstrated the high sensitivity and specificity of the signature for survival prediction, and the one-, three-, and five-year AUC values, respectively, were 0.974, 0.929, and 0.941 in the entire set. Cox regression analysis, C-index, DCA, PCA analysis, and nomogram were also applied to assess the validity and accuracy of the risk model. The GO and KEGG enrichment analyses indicated that this signature is significantly related to immune-related pathways and molecules. Finally, we investigated the immunological characteristics and immunotherapy of the model and identified various novel potential compounds in the model for UM. In summary, we constructed a new model on the basis of irlncRNAs that can accurately predict prognosis and response on immunotherapy of UM patients, which may provide valuable clinical applications in antitumor immunotherapy.

Funder

Research Project of Suining Central Hospital

Publisher

Hindawi Limited

Subject

Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3