Valorization of Wasted Black Tea as a Low-Cost Adsorbent for Nickel and Zinc Removal from Aqueous Solution

Author:

Malakahmad Amirhossein1,Tan Sandee1,Yavari Saba1

Affiliation:

1. Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Malaysia

Abstract

Characteristics and efficiency of wasted black tea (WBT) were investigated as a low-cost sorbent in removal of Ni2+and Zn2+ions from aqueous solution. Initial findings showed WBT potential to be applied as an effective sorbent due to high concentrations of carbon and calcium and high porosity and availability of functional groups. Sorption dynamics were studied with varying pH, contact time, and adsorbent dose. Maximum percentages of metal ions removal were recorded at pH 5, contact time 250 min, and 20 g/L of adsorbent concentration. Binary metal sorption studies showed that Ni2+and Zn2+do not compete with each other for available sorption sites, so the adsorption trend in binary system appears similar to monocomponent metal adsorption. Evaluation of the isotherms confirmed that WBT has high value of adsorption capacity. Sorption data fitted well with both Freundlich and Langmuir models. In the optimum conditions, maximum capacity of WBT could reach up to 90.91 mg-Ni/g adsorbent and 166.67 mg-Zn/g adsorbent. This experiment demonstrated the ability of tea waste as an effective, sustainable, and low-cost adsorbent for removal of the heavy metal ions.

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3