Effect of Oxidized Wood Pulp Fibers on the Performance of the Thermoplastic Corn Starch Composites

Author:

Yin Peng1,Zhou Wen1,Dong Xin1,Guo Bin123ORCID,Huang Yanan23

Affiliation:

1. College of Science, Nanjing Forestry University, Nanjing 210037, China

2. Agricultural and Forest Products Processing Academician Workstation, Luohe 462600, China

3. Postdoctoral Research Center of Nanjiecun Group, Luohe 462600, China

Abstract

In this study, oxidized wood pulp fiber (OWPF) was prepared by oxidizing wood pulp fiber (WPF) with NaIO4, and OWPFs with different oxidation degrees were obtained and characterized by light microscope, XRD, and TG. Then, OWPFs with different oxidation degrees were incorporated into thermoplastic starch (TPS) to prepare OWPF/TPS composites. The cross-section morphology, water resistance, and physical and mechanical properties of the composites were investigated. SEM showed good dispersion of OWPF in the continuous TPS phase. The tensile strength of OWPF/TPS reached a maximum value of 5.02 MPa when the oxidation degree of OWPF was 0.5. Elongation at break of OWPF/TPS composites increased with the increasing oxidation degree of OWPF. Meanwhile, as a result of cross-linking, the water contact angle was also improved with the increased oxidation degree of OWPF. The study provided a new way to prepare a degradable TPS composite with satisfying properties to be used for packaging and catering.

Funder

Higher School in Jiangsu Province College Students’ Practice Innovation Training Programs

Publisher

Hindawi Limited

Subject

Polymers and Plastics,Organic Chemistry,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3