Regulation of the Inflammatory Response, Proliferation, Migration, and Epithelial-Mesenchymal Transition of Human Lens Epithelial Cells by the lncRNA-MALAT1/miR-26a-5p/TET1 Signaling Axis

Author:

Hu Yaru1,Han Xue1,Chen Yue1,Cai Jinbiao1,Li Juan1,Fan Yuchen1,Wang Jianfeng1ORCID,Xie Shanglun2ORCID

Affiliation:

1. Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China

2. School of Life Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, Anhui 233030, China

Abstract

Background. The ocular inflammatory microenvironment has been reported to be closely associated with the occurrence and progression of highly myopic cataract (HMC). Long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) could alter the biological properties of mammalian cells by modulating the expression of inflammatory mediators; therefore, it may contribute to the development of HMC. Objective. To investigate the function of MALAT1 in the inflammatory response, proliferation, migration, and epithelial-mesenchymal transition (EMT) of inflammatory and injured human lens epithelial cells (HLECs) and to reveal the underlying molecular signals. Methods. Patients with HMC and age-related cataract (ARC) with an axial length of more than 26 mm were selected, and the anterior capsular tissue was obtained during cataract surgery. TNF-α (20 ng/mL) was chosen to induce inflammatory damage in HLECs to simulate the inflammatory microenvironment in HMC eyes. Specific siRNAs, inhibitors, and mimics were used to suppress or enhance the functions of MALAT1 and miR-26a-5p. RT-qPCR and Western blot analysis were performed to measure gene and protein expression, respectively. Results. The expression of MALAT1 and the inflammatory mediators IL-6, MMP-2, and MMP-9 were significantly higher in HMC anterior capsule tissues than in ARC. TNF-α treatment increased the expression of MALAT1, while it also promoted the proliferation, migration, and EMT of HLECs. MALAT1 interference decreased the expression of IL-6 and MMP-2 and inhibited the aforementioned processes. Furthermore, MALAT1 negatively regulated the expression of miR-26a-5p and then promoted TET1 expression. TET1 was identified as a direct target of miR-26a-5p, and the promoting effect of MALAT1 on TET1 expression could be reversed by miR-26a-5p mimics. Conclusion. The inflammatory environment and MALAT1 expression could be reciprocally induced in HLECs. MALAT1 may act as a ceRNA via the “sponge” miR-26a-5p and target TET1 to regulate the inflammatory response, proliferation, migration, and EMT processes in HLECs.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3