On the Degrees of Freedom of Mixed Matrix Regression

Author:

Shang Pan1,Kong Lingchen1ORCID

Affiliation:

1. Department of Applied Mathematics, Beijing Jiaotong University, Beijing 100044, China

Abstract

With the increasing prominence of big data in modern science, data of interest are more complex and stochastic. To deal with the complex matrix and vector data, this paper focuses on the mixed matrix regression model. We mainly establish the degrees of freedom of the underlying stochastic model, which is one of the important topics to construct adaptive selection criteria for efficiently selecting the optimal model fit. Under some mild conditions, we prove that the degrees of freedom of mixed matrix regression model are the sum of the degrees of freedom of Lasso and regularized matrix regression. Moreover, we establish the degrees of freedom of nuclear-norm regularization multivariate regression. Furthermore, we prove that the estimates of the degrees of freedom of the underlying models process the consistent property.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nonconvex mixed matrix minimization;Mathematical Foundations of Computing;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3