A Low-Light Image Enhancement Method Based on Image Degradation Model and Pure Pixel Ratio Prior

Author:

Gu Zhenfei12ORCID,Chen Can3,Zhang Dengyin1ORCID

Affiliation:

1. School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing, China

2. Nanjing College of Information Technology, Nanjing, China

3. School of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing, China

Abstract

Images captured in low-light conditions are prone to suffer from low visibility, which may further degrade the performance of most computational photography and computer vision applications. In this paper, we propose a low-light image degradation model derived from the atmospheric scattering model, which is simple but effective and robust. Then, we present a physically valid image prior named pure pixel ratio prior, which is a statistical regularity of extensive nature clear images. Based on the proposed model and the image prior, a corresponding low-light image enhancement method is also presented. In this method, we first segment the input image into scenes according to the brightness similarity and utilize a high-efficiency scene-based transmission estimation strategy rather than the traditional per-pixel fashion. Next, we refine the rough transmission map, by using a total variation smooth operator, and obtain the enhanced image accordingly. Experiments on a number of challenging nature low-light images verify the effectiveness and robustness of the proposed model, and the corresponding method can show its superiority over several state of the arts.

Funder

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3