Anomaly Detection in Smart Metering Infrastructure with the Use of Time Series Analysis

Author:

Andrysiak Tomasz1ORCID,Saganowski Łukasz1ORCID,Kiedrowski Piotr1ORCID

Affiliation:

1. Institute of Telecommunications, Faculty of Telecommunications and Electrical Engineering, University of Technology and Life Sciences (UTP), Ul. Kaliskiego 7, 85-789 Bydgoszcz, Poland

Abstract

The article presents solutions to anomaly detection in network traffic for critical smart metering infrastructure, realized with the use of radio sensory network. The structure of the examined smart meter network and the key security aspects which have influence on the correct performance of an advanced metering infrastructure (possibility of passive and active cyberattacks) are described. An effective and quick anomaly detection method is proposed. At its initial stage, Cook’s distance was used for detection and elimination of outlier observations. So prepared data was used to estimate standard statistical models based on exponential smoothing, that is, Brown’s, Holt’s, and Winters’ models. To estimate possible fluctuations in forecasts of the implemented models, properly parameterized Bollinger Bands was used. Next, statistical relations between the estimated traffic model and its real variability were examined to detect abnormal behavior, which could indicate a cyberattack attempt. An update procedure of standard models in case there were significant real network traffic fluctuations was also proposed. The choice of optimal parameter values of statistical models was realized as forecast error minimization. The results confirmed efficiency of the presented method and accuracy of choice of the proper statistical model for the analyzed time series.

Funder

National Centre for Research and Development

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3