Reproducing Kernel Algorithm for the Analytical-Numerical Solutions of Nonlinear Systems of Singular Periodic Boundary Value Problems

Author:

Abu Arqub Omar1

Affiliation:

1. Department of Mathematics, Al-Balqa Applied University, Salt 19117, Jordan

Abstract

The reproducing kernel algorithm is described in order to obtain the efficient analytical-numerical solutions to nonlinear systems of two point, second-order periodic boundary value problems with finitely many singularities. The analytical-numerical solutions are obtained in the form of an infinite convergent series for appropriate periodic boundary conditions in the spaceW230,1, whilst two smooth reproducing kernel functions are used throughout the evolution of the algorithm to obtain the required nodal values. An efficient computational algorithm is provided to guarantee the procedure and to confirm the performance of the proposed approach. The main characteristic feature of the utilized algorithm is that the global approximation can be established on the whole solution domain, in contrast with other numerical methods like onestep and multistep methods, and the convergence is uniform. Two numerical experiments are carried out to verify the mathematical results, whereas the theoretical statements for the solutions are supported by the results of numerical experiments. Our results reveal that the present algorithm is a very effective and straightforward way of formulating the analytical-numerical solutions for such nonlinear periodic singular systems.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3