A New Insight to Vibration Characteristics of Spans under Random Moving Load: Case Study of 38 Bridges in Ho Chi Minh City, Vietnam

Author:

Nguyen Thanh Q.12ORCID,Nguyen Thao D.13,Tran Lam Q.13,Ngo Nhi K.12

Affiliation:

1. Laboratory of Applied Mechanics (LAM), Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City 740030, Vietnam

2. Vietnam National University, Ho Chi Minh City 740030, Vietnam

3. Ho Chi Minh City Department of Transportation, Ho Chi Minh City 740030, Vietnam

Abstract

We propose a novel representative power spectrum density as a specific characteristic for showing responses of spans during a long operational period. The idea behind this method is to use the representative power spectrum density as a powerful tool to evaluate the stiffness decline of spans during their operation period. In addition, a new measurement method has been introduced to replace the traditional method of monitoring the health conditions of bridges through a periodic measurement technique. This helps to reduce costs when carrying out testing bridges. Besides, the proposed approach can be widely applied not only in Vietnam but also in many other underprivileged countries around the world. Obtained results show that, during the operational process of spans, there is not only a pure vibration evaluation such as bending vibration and torsion vibration tests but also a combination of various vibration types including bending-torsion vibration or high-level vibrations like first-mode bending and first-mode torsion. Depending on each type of structure and material properties, different types of vibrations will appear more or less during the operational process of spans under a random moving load. Furthermore, the representative power spectrum density is also suitable for evaluating and determining many different fundamental vibrations through the same measurement time as well as various measurement times.

Funder

Ho Chi Minh City University of Technology, VNU-HCM

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3