Chlamydia pneumoniae Interferes with Macrophage Differentiation and Cell Cycle Regulation to Promote Its Replication

Author:

Taavitsainen-Wahlroos Eveliina1ORCID,Miettinen Ilkka1,Ylätalo Maarit1ORCID,Reigada Inés1ORCID,Savijoki Kirsi2ORCID,Nyman Tuula Anneli3ORCID,Hanski Leena1ORCID

Affiliation:

1. Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland

2. Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland

3. Department of Immunology, University of Oslo and Oslo University Hospital, Norway

Abstract

Chlamydia pneumoniae is a ubiquitous intracellular bacterium which infects humans via the respiratory route. The tendency of C. pneumoniae to persist in monocytes and macrophages is well known, but the underlying host-chlamydial interactions remain elusive. In this work, we have described changes in macrophage intracellular signaling pathways induced by C. pneumoniae infection. Label-free quantitative proteome analysis and pathway analysis tools were used to identify changes in human THP-1-derived macrophages upon C. pneumoniae CV6 infection. At 48-h postinfection, pathways associated to nuclear factor κB (NF-κB) regulation were stressed, while negative regulation on cell cycle control was prominent at both 48 h and 72 h. Upregulation of S100A8 and S100A9 calcium binding proteins, osteopontin, and purine nucleoside hydrolase, laccase domain containing protein 1 (LACC1) underlined the proinflammatory consequences of the infection, while elevated NF-κB2 levels in infected macrophages indicates interaction with the noncanonical NF-κB pathway. Infection-induced alteration of cell cycle control was obvious by the downregulation of mini chromosome maintenance (MCM) proteins MCM2-7, and the significance of host cell cycle regulation for C. pneumoniae replication was demonstrated by the ability of a cyclin-dependent kinase (CDK) 4/6 inhibitor Palbociclib to promote C. pneumoniae replication and infectious progeny production. The infection was found to suppress retinoblastoma expression in the macrophages in both protein and mRNA levels, and this change was reverted by treatment with a histone deacetylase inhibitor. The epigenetic suppression of retinoblastoma, along with upregulation of S100A8 and S100A9, indicate host cell changes associated with myeloid-derived suppressor cell (MDSC) phenotype.

Funder

Norges Forskningsråd

Publisher

Hindawi Limited

Subject

Virology,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3