Interfacial Behaviour of Shield Tunnel Segment Strengthened by Thin Plate at Inner Surface

Author:

Liu Dejun12ORCID,Guo Yihao1ORCID,Yao Xiaoyun1ORCID

Affiliation:

1. State Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Beijing 100083, China

2. School of Mechanics and Civil Engineering, China University of Mining and Technology, Beijing 100083, China

Abstract

The strength and stiffness of a shield tunnel segment can be improved significantly by bonding a steel plate at its inner surface. In this kind of strengthened segment, interface debonding is usually the controlling failure mode, and it strongly depends on the interfacial stresses of the adhesive layer between the segment and the steel plate. To deepen the understanding of the interfacial behaviour, this study proposes a three-dimensional fine finite element (FE) model regarding the interfacial stresses. An existing full-scale experimental result is then employed to confirm the feasibility and accuracy of the proposed model. Further, the fine finite element model is used to calculate the interfacial stress distributions and to evaluate the structural parameters on the interfacial behaviour of the strengthened segment. A high concentration of interfacial stresses exists at the vicinity of the steel plate ends and the joints, which might result in premature failure at these locations. Both the normal and shear stresses at the interface are significantly influenced by the structural parameters. The findings in this study can provide guidance for the optimal design of strengthened shield segment that can prevent premature interfacial debonding.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3