New Stabilization Properties of Pendulum Models Applying a Large Parameter

Author:

Ismail A. I.12ORCID,Ghulman Hamza A.1

Affiliation:

1. Mechanical Engineering Department, College of Engineering and Islamic Architecture, Umm Al-Qura University, P.O. Box 5555, Makkah, Saudi Arabia

2. Mathematics Department, Faculty of Science, Tanta University, P.O. Box 31527, Tanta, Egypt

Abstract

In the present paper, we introduce new models of pendulum motions for two cases: the first model consists of a pendulum with mass M moving at the end of a string with a suspended point moving on an ellipse and the second one consists of a pendulum with mass M moving at the end of a spring with a suspended point on an ellipse. In both models, we use the Lagrangian functions for deriving the equations of motions. The derived equations are reduced to a quasilinear system of the second order. We use a new mathematical technique named a large parameter method for solving both models’ systems. The analytical solutions are obtained in terms of the generalized coordinates. We use the numerical techniques represented by the fourth-order Runge–Kutta method to solve the autonomous system for both cases. The stabilities of the obtained solutions are studied using the phase diagram procedure. The obtained numerical solutions and analytical ones are compared to examine the accuracy of the mathematical and numerical techniques. The large parameter technique gives us the advantage to obtain the solutions at infinity in opposite with the famous Poincare’s (small parameters) method which was used by many outstanding scientists in the last two centuries.

Funder

Umm Al-Qura University

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A slow rotary dynamic motion of a disc under the influence of torque with the concept of a large parameter;Journal of Low Frequency Noise, Vibration and Active Control;2022-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3