Research on Underground Chemical Gas Monitoring and Target Location Based on an Improved Moth Flame Algorithm

Author:

Tu Chunmei1ORCID,Chen Guobin12ORCID

Affiliation:

1. Chongqing Key Laboratory of Spatial Data Mining and Big Data Integration for Ecology and Environment, Chongqing Finance and Economics College, Chongqing 401320, China

2. College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

Abstract

The danger of downhole work is mainly due to the chemical toxic gases and flammable gases NO2, CO, SO2, H2S, CH4, CO2, etc. When the concentration reaches a certain value, it will produce very great harm. With the continuous development of sensor technology and communication technology, it is necessary to monitor the relevant geographic features below the ground. Because of the complex environmental parameters of the coal mine roadway and the interference caused by various electrical equipment, the transmission of mine electromagnetic signals will be affected, resulting in low positioning accuracy. However, the underground chemical gas leakage leads to the life of underground workers which cannot be guaranteed, so it is necessary to effectively monitor the concentration of chemical gas components in underground mines. In this paper, a moth flame algorithm based on optimized inertia weights is proposed. By continuously improving the local inertia weights, the global optimum is determined by using the change of inertia weights in the iterative process of the algorithm. By testing the convergence and optimal value of several algorithms under common test functions, IMFO can obtain the global optimal solution. Finally, the concentrations of chemical gases NO2, CO, SO2, H2S, CH4, and CO2 are monitored by setting specific areas to see if they reach the early warning values. Then, 16 coordinates in the region are used to predict the above method, and the IMFO algorithm can achieve the best prediction effect.

Funder

Chongqing Municipal Education Commission

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Reference18 articles.

1. Radio frequency identification (RFID) technology for academic, logistics and passenger transport applications;J. J. Ramírez;Ingeniería E Investigación,2012

2. Radio Map Update Automation for WiFi Positioning Systems

3. A strong anti-interference capability location algorithm based on RSSI;G. Li-Peng

4. Fuzzy-Based Hybrid Location Algorithm for Vehicle Position in VANETs via Fuzzy Kalman Filtering Approach

5. Adequate is better: particle swarm optimization with limited-information

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3