miRNA-Mediated Low Expression of EPHX3 Is Associated with Poor Prognosis and Tumor Immune Infiltration in Head and Neck Squamous Cell Carcinomas

Author:

Ding Shun1ORCID,Hong Qichao2,Duan Tingting1ORCID,Xu Zhengyang1ORCID,He Qing1,Qiu Dongqin1,Li Lin1,Yan Jingren1,Zhang Qimeng1,Mu Zhonglin1ORCID

Affiliation:

1. Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Hainan Medical University, Haikou 570102, China

2. Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou 570311, China

Abstract

The aim of this study was to explore the regulatory role of epoxide hydrolase 3 (EPHX3) in head and neck squamous cell carcinoma (HNSCC) and to analyze its bioinformatic function, as well as, to screen and predict the miRNAs that can regulate EPHX3 expression in HNSCC. We examined the expression profile and prognostic potential of EPHX3 in TCGA and GTEX databases and performed functional enrichment analysis of EPHX3 using string database. Subsequently, we analyzed the regulatory role of miRNAs on EPHX3, including expression analysis, correlation analysis, and survival analysis. In addition, we also used TIMER to investigate the relationship among EPHX3 expression level, immune checkpoints, and immune infiltration in HNSCC. The results of data analysis after TGCA showed that EPHX3 is a key regulator of tumorigenesis in 13 cancers and can be used as a marker of poor prognosis in HNSCC patients. Bioinformatics analysis revealed that miR-4713-3p is a key miRNA of EPHX3 in HNSCC. Together, our findings indicate that EPHX3 exerts its anticancer effects by suppressing tumor immune checkpoint expression and immune cell infiltration. Overall, our data uncovered miRNA-mediated EPHX3 downregulation as a contributor to poor HNSCC prognosis and reduced tumor immune infiltration.

Funder

Natural Science Foundation of Hainan Province

Publisher

Hindawi Limited

Subject

Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3