Consequence of Double-Diffusion Convection and Partial Slip on Magneto-Oldroyd-4 Constants Nanofluids with Peristaltic Propulsion in an Asymmetric Channel

Author:

Athar Maria1ORCID,Khan Yasir2ORCID,Akram Safia3ORCID,Saeed Khalid4ORCID,Alameer A.2ORCID,Hussain Anwar5ORCID

Affiliation:

1. National University of Modern Languages, Islamabad, Pakistan

2. Department of Mathematics, University of Hafr Al-Batin, Hafr Al-Batin 31991, Saudi Arabia

3. MCS, National University of Sciences and Technology, Islamabad, Pakistan

4. Comsats University, Islamabad, Pakistan

5. Department of Mechanical Engineering, School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Islamabad, Pakistan

Abstract

The double-diffusive convection is a significant physical phenomenon that arises in fluid mechanics. It is primarily associated with a convection process in which two dissimilar density gradients with varying diffusion rates are considered. The primary goal of this study is to investigate the effects of double-diffusivity convection and partial slip with an inclined magnetic field on peristaltic propulsion in an asymmetric channel for Oldroyd-4 constants nanofluids. The flow of an Oldroyd-4 constant nanofluid is mathematically modeled in the presence of double-diffusivity convection and a tilted magnetic field. Lubrication methodology is applied to simplify the highly nonlinear system of partial differential equations (PDEs). The numerical scheme is used to calculate the solution of coupled nonlinear PDEs. Furthermore, the effect of changing the parameters associated with slip, thermophoresis, Brownian motion, Grashof number of nanoparticles, Hartmann number, pumping, and trapping are investigated in this article. It is noticed that the temperature rises as the Brownian motion and thermophoresis constraints increases. This is because the growth in the Brownian motion parameter indicates the increase in the kinetic energy of nanoparticles which results in warming up the nanofluid. Also, concentration falls as the Brownian motion and thermophoresis constraints increases.

Funder

University of Hafr Al Batin

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3