Antioxidant, Enzyme Inhibitory, and Molecular Docking Approaches to the Antidiabetic Potentials of Bioactive Compounds from Persicaria hydropiper L.

Author:

Ayaz Muhammad1ORCID,Sadiq Abdul1ORCID,Mosa Osama F.23ORCID,Zafar Tariq Abdalla2,Eisa Hamdoon Alashary Adam24ORCID,Elkhalifa Modawy Elnour Modawy24ORCID,Elawad Mohammed Ahmed24ORCID,Ahmed Alshebli24ORCID,Ullah Farhat1ORCID,Ghufran Mehreen5ORCID,Kabra Atul6ORCID

Affiliation:

1. Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18000, Dir (L), KP, Pakistan

2. Public Health Department Health Sciences College at Lieth, Umm Al Qura University, Makkah, Saudi Arabia

3. Biochemistry Department, Bukhara State Medical Institute Named after Abu Ali Ibn Sino, Bukhara, Uzbekistan

4. Faculty of Public and Environmental Health, University of Khartoum, Khartoum, Sudan

5. Department of Pathology, MTI Bacha Khan Medical College, Mardan, Pakistan

6. University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali-140413, Punjab, India

Abstract

Introduction. Natural products are among the most useful sources for the discovery of new drugs against various diseases. Keeping in view the ethnobotanical relevance ethnopharmacological significance of Polygonaceae family in diabetes, the current study was designed to isolate pure compounds from Persicaria hydropiper L. leaves and evaluate their in vitro and in silico antidiabetic potentials. Methods. Six compounds were isolated from the chloroform-ethyl acetate fractions using gravity column chromatography and were subjected to structure elucidation process. Structures were confirmed using 1H-NMR, 13C-NMR, and mass spectrometry techniques. Isolated phytochemicals were subjected to in vitro antidiabetic studies, including α-glucosidase, α-amylase inhibition, and DPPH, and ABTS antioxidant studies. Furthermore, the in silico binding mode of these compounds in the target enzymes was elucidated via MOE-Dock software. Results. The isolated compounds revealed concentration-dependent inhibitions against α-glucosidase enzyme. Ph-1 and Ph-2 were most potent with 81.84 and 78.79% enzyme inhibitions at 1000 µg·mL−1, respectively. Ph-1 and Ph-2 exhibited IC50s of 85 and 170 µg·mL−1 correspondingly. Likewise, test compounds showed considerable α-amylase inhibitions with Ph-1 and Ph-2 being the most potent. Tested compounds exhibited considerable antioxidant potentials in both DPPH and ABTS assays. Molecular simulation studies also revealed top-ranked confirmations for the majority of the compounds in the target enzymes. Highest observed potent compound was Ph-1 with docking score of −12.4286 and formed eight hydrogen bonds and three H-pi linkages with the Asp 68, Phe 157, Phe 177, Asn 241, Glu 276, His 279, Phe 300, Glu 304, Ser 308, Pro 309, Phe 310, Asp 349, and Arg 439 residues of α-glucosidase binding packets. Asp 68, Glu 276, Asp 349, and Arg 439 formed polar bonds with the 3-ethyl-2-methylpentane moiety of the ligand. Conclusions. The isolated compounds exhibited considerable antioxidant and inhibitory potentials against vital enzymes implicated in T2DM. The docking scores of the compounds revealed that they exhibit affinity for binding with target ligands. The enzyme inhibition and antioxidant potential of the compounds might contribute to the hypoglycemic effects of the plant and need further studies.

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3