A Hybrid Service Recommendation Prototype Adapted for the UCWW: A Smart-City Orientation

Author:

Zhang Haiyang1,Ganchev Ivan12ORCID,Nikolov Nikola S.13,Ji Zhanlin14ORCID,O’Droma Máirtín1

Affiliation:

1. Telecommunications Research Centre (TRC), University of Limerick, Limerick, Ireland

2. Department of Computer Systems, University of Plovdiv “Paisii Hilendarski”, Plovdiv, Bulgaria

3. Department of Computer Science and Information Systems, University of Limerick, Limerick, Ireland

4. North China University of Science and Technology, Tangshan, China

Abstract

With the development of ubiquitous computing, recommendation systems have become essential tools in assisting users in discovering services they would find interesting. This process is highly dynamic with an increasing number of services, distributed over networks, bringing the problems of cold start and sparsity for service recommendation to a new level. To alleviate these problems, this paper proposes a hybrid service recommendation prototype utilizing user and item side information, which naturally constitute a heterogeneous information network (HIN) for use in the emerging ubiquitous consumer wireless world (UCWW) wireless communication environment that offers a consumer-centric and network-independent service operation model and allows the accomplishment of a broad range of smart-city scenarios, aiming at providing consumers with the “best” service instances that match their dynamic, contextualized, and personalized requirements and expectations. A layered architecture for the proposed prototype is described. Two recommendation models defined at both global and personalized level are proposed, with model learning based on the Bayesian Personalized Ranking (BPR). A subset of the Yelp dataset is utilized to simulate UCWW data and evaluate the proposed models. Empirical studies show that the proposed recommendation models outperform several widely deployed recommendation approaches.

Funder

China Scholarship Council

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3