Optimization of Indirect Fracturing Process Parameters Based on Mechanical Properties of Fractured and Low-Permeability Coal

Author:

Yuan Wenfeng12,Zheng Xigui1345ORCID,Shahani Niaz Muhammad13ORCID

Affiliation:

1. School of Mines, China University of Mining and Technology, Xuzhou 221116, China

2. Changzhi Company of Shanxi Coal Transportation and Marketing Group, Changzhi 046000, China

3. The State Key Laboratory for Geo Mechanics and Deep Underground Engineering, China University of Mining & Technology, Xuzhou 221116, China

4. School of Mines and Civil Engineering, Liupanshui Normal University, Liupanshui, China

5. Guizhou Guineng Investment Co., Ltd., Guiyang, China

Abstract

The coal-bed methane (CBM) resources in soft and low-permeability coals are assumed to be as much as 15 × 1012 m3 in China. Indirect fracturing technology can be an effective method to successfully extract methane within soft coals. The key to the success of this technique is to optimize the parameters, such as water injection flow rate and fracture initiation location, so that the hydraulic fracturing parameters enable the fractures to pass through the interface between coal and rock and propagate sufficiently into the coal. This paper focuses on solving the above problems by focusing on discontinuities and plastic characteristics of soft coals. Voronoi polyhedron was used to simulate the discontinuities of coal, and the constitutive relations of ductile fracture-seepage and elastoplastic damage-seepage are, respectively, given to the discontinuities and coal matrix. A numerical model was established based on the above theory to simulate the effect of stress difference Δσ, coal-rock interface friction coefficient fc,r, water injection flow rate i w , and distance between the well and the interface Dop on indirect fracturing fractures. The results show that the HFs area in the coal is positively correlated with Δσ, fc,r, and i w , and it first increases and then decreases with the decrease of Dop. The above results were applied in the Zhaozhuang mine of Qinshui Basin by optimizing Dop = 1 m and iw = 8 m3/min, so that CBM production has been greatly increased. The results can provide theoretical support for the efficient development of CBM in fractured and low-permeability coal seam areas.

Funder

China University of Mining and Technology

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3