All-Domain Fusion-Based Time Synchronization Protocol in SD-ATSN

Author:

Zhu Meng-Yuan1ORCID,Chen Ke-Fan2,Chen Zhuo3,Lv Na1ORCID

Affiliation:

1. Information and Navigation College, Air Force Engineering University, Xi’an 710077, China

2. People’s Liberation Army of China, Nan Jing 210000, China

3. People’s Liberation Army of China, Lu An 237000, China

Abstract

As combat scales up and weapons become more intelligent, airborne networks (AN) must facilitate high-precision communications. This means that the airborne network should have communication capability with minimum delay, low jitter, and high reliability, and this new type of AN is called an airborne time-sensitive network (ATSN). A prerequisite to guarantee the above communication capability is to have a high precision time synchronization protocol. To plug this gap, we have designed a software-defined airborne time-sensitive network (SD-ATSN) architecture based on the benefits of software-defined centralization and flexibility. It supports our proposed all-domain fusion-based time synchronization protocol (AF-TSP) to support precise time synchronization between ATSN platforms. In AF-TSP, we innovatively propose an all-domain (land, sea, air, and space) master clock hot standby mechanism to cope with the existing instability and poor robustness in AN. In the key problem of the master clock election, we first completed a rough election utilizing improved K-Means++. Subsequently, on top of the rough election, we inserted a mixed mutation operator to improve the convergence of the multiobjective optimization algorithm No Dominant Sorting Genetic Algorithm-II (NSGA-II). The control delay, clock accuracy, and path reliability coefficient are the optimization objectives for selecting the appropriate master clock. Simulation results demonstrate that our protocol has advantages in terms of synchronization precision, communication delay, and network robustness.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Reference39 articles.

1. Space-Air-Ground Integrated Network: A Survey

2. Aeronautical $Ad~Hoc$ Networking for the Internet-Above-the-Clouds

3. The compositional architecture of the Internet;J. Rexford;Communications of the ACM,2019

4. Dynamic relay node selection scheme for multi-hop time synchronization in Link-16;M. Cheon

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3