ECG-ViT: A Transformer-Based ECG Classifier for Energy-Constraint Wearable Devices

Author:

Shukla Neha12ORCID,Pandey Anand1ORCID,Shukla Anand Prakash3ORCID,Neupane Sanjeev Chandra4ORCID

Affiliation:

1. CSE Department, SRM Institute of Science and Technology, Meerut Road, Modi Nagar, Delhi-NCR, India

2. CS Department, KIET Group of institutions, Delhi-NCR, India

3. Technical Education Department, Government of Uttar Pradesh, India

4. Reconwithme, Nepal

Abstract

The advancement in deep learning techniques has helped researchers acquire and process multimodal data signals from different healthcare domains. Now, the focus has shifted towards providing end-to-end solutions, i.e., processing these data and developing models that can be directly implemented on edge devices. To achieve this, the researchers try to solve two problems: (I) reduce the complex feature dependencies and (II) reduce the complexity of the deep learning model without compromising accuracy. In this paper, we focus on the later part of reducing the complexity of the model by using the knowledge distillation framework. We have introduced knowledge distillation on the Vision Transformer model to study the MIT-BIH Arrhythmia Database. A tenfold crossvalidation technique was used to validate the model, and we obtained a 99.7% F1 score and 99.3% accuracy. The model was further tested on the Xilinx Alveo U50 FPGA accelerator, and it is found fit for any low-powered wearable device implementation.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3