A Damage Detection Algorithm Utilizing Dynamic Displacement of Bridge under Moving Vehicle

Author:

Sun Zhen12,Nagayama Tomonori1,Su Di1,Fujino Yozo3

Affiliation:

1. Department of Civil Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

2. Jiangsu Transportation Institute, 2200 Chengxin Street, Nanjing 211112, China

3. Institute of Advanced Sciences, Yokohama National University, 79-1 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

Abstract

A damage detection method is proposed, which utilizes dynamic displacement of bridge structures under moving vehicle. The problem is first elaborated with closed-form solution of dynamic displacement, which is decomposed into quasi-static component and dynamic component. Dynamic curvature is defined as second derivative of the dynamic displacement for detecting damage location and estimating damage extent. Damage is modeled by local reduction of stiffness in this paper. Numerical study was conducted on a simply supported beam to verify the proposed method. Vehicle model is analyzed with Newmark’s method using Matlab to obtain the contact force acting on the bridge. Beam model is established in commercial finite element software ABAQUS. The effects of road surface roughness and vehicle-bridge interaction are both considered in the analysis. In order to identify damage location and extent, dynamic curvature was calculated with midspan displacement. Parametric study on measurement noise level, damage location, damage extent, and multiple damage cases is performed, and the analysis results show both reliability and efficacy of this method in damage detection of bridge structures. At last, conclusions are drawn for its application to bridges in engineering practice.

Funder

Ministry of Education, Culture, Sports, Science, and Technology

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3