Massive MIMO Systems with Low-Resolution ADCs: Achievable Rates and Allocation of Quantization Bits

Author:

Zhang Wence12ORCID,Xia Jing12ORCID,Bao Xu12ORCID

Affiliation:

1. School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China

2. Jiangsu Key Laboratory of Security Technology for Industrial Cyberspace, Zhenjiang 212013, China

Abstract

In massive multiple-input multiple-output (MIMO) systems, the large number of high-resolution analog-to-digital converters (ADCs) lead to high hardware cost and power consumption. In this work, the uplink achievable rates of massive MIMO systems with low-resolution ADCs are studied with consideration of both “Uniform-ADC” that uses ADCs with the same number of quantization bits and “Mixed-ADC” that allows the use of ADCs with different resolutions. By leveraging an additive quantization noise model (AQNM), the asymptotic achievable rates are obtained for maximum ratio combining (MRC), zero-forcing (ZF), and linear minimum mean squared error (LMMSE) receivers in very simple forms. Taking advantages of the theoretical results, we propose two criteria for allocation of quantization bits. It is found that the optimal quantization bits allocation for LMMSE is Mixed-ADCs with number of quantization bits that are polarized, while Uniform-ADC is optimal for MRC and ZF. When there is a constraint on the total ADC power consumption, the proposed quantization-bit allocation scheme for LMMSE becomes Uniform-ADC when the transmit signal-to-noise ratio (SNR) is below a threshold, which is related to the system scale and the ADC power consumption. The theoretical results are verified by Monte-Carlo simulations.

Funder

Young Talent Project of Jiangsu University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3