A New Ensemble Learning Method for Multiple Fusion Weighted Evidential Reasoning Rule

Author:

Zhang YiZhe1ORCID,Zhang YunYi1,Zhou GuoHui1,Zhang Wei1ORCID,Li KangLe2,Mu QuanQi1ORCID,He Wei1ORCID,Tang Kai1

Affiliation:

1. Harbin Normal University, Harbin 150025, China

2. Harbin Finance University, Harbin 150030, China

Abstract

Ensemble learning, as a kind of method to improve the generalization ability of classifiers, is often used to improve the model effect in the field of deep learning. However, the present ensemble learning methods mostly adopt voting fusion in combining strategies. This strategy has difficulty mining effective information from the classifiers and cannot effectively reflect the relationship between different classifiers. Ensemble learning based on the evidential inference rule (ER rule) can effectively excavate the internal relationships among different classifiers and has a certain interpretability. However, the ER rule depends on the weight distribution of different combination strategies, and the setting of the evidence weight will affect the accuracy and stability of the model. Therefore, this paper proposes a new ensemble learning method based on multiple fusion weighted evidential reasoning rules and constructs an ensemble learning framework for data fusion and decision mapping. This framework takes the evidence weight, confidence, and feature data of each classifier as input and the integration results as output. The weight of evidence was determined by multiple fusion weights of the entropy weight method and order relation method. Finally, the integrated learning process is set up by the ER algorithm. The method proposed in this paper is verified by multiple datasets. Experimental results show that the surface construction model has good performance, and the defects of single weighting instability are greatly improved under the premise of improving the integration effect.

Funder

China Postdoctoral Science Foundation

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identifying Key Learning Algorithm Parameter of Forward Feature Selection to Integrate with Ensemble Learning for Customer Churn Prediction;VFAST Transactions on Software Engineering;2024-06-11

2. Cancer data analysis using competitive ensemble machine learning techniques;Health and Technology;2024-05-22

3. Vitalis – An Integrated System for Supplement Assessment and Recommendation;2024 11th International Conference on Computing for Sustainable Global Development (INDIACom);2024-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3