Layout Optimization of Flexible Manufacturing Cells Based on Fuzzy Demand and Machine Flexibility

Author:

Zhang Xiaodong1,Zhou Hongli2ORCID,Zhao Dongfang1

Affiliation:

1. Donlinks School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China

2. School of Information, Beijing Wuzi University, Beijing 101149, China

Abstract

Layout flexibility is critical for the performance of flexible manufacturing cells, especially in dynamic production environment. To improve layout flexibility, layout optimization should consider more flexible factors based on existed models. On the one hand, not only should the current production demands be covered, but also the future uncertain demands should be considered so that the cell can adapt to the dynamic changes in a long term. On the other hand, the flexibility of machines should be balanced in the layout in order to guarantee that the cell can deal with dynamic new product introduction. Starting from these two points, we formulate a layout optimization model based on fuzzy demand and machine flexibility and then develop a genetic algorithm with bilayer chromosome to solve the model. We apply this new model to a flexible cell of shell products and test its performance by comparing it with the classical two-stage model. The total logistics path of the new model is shown to be significantly shorter than the classical model. Then we carry out adaptability experiments to test the flexibility of the new model. For the dynamic situation of both the fluctuation of production demands and the introduction of new products, the new model shows obvious advantages to the classical model. The results indicate that this advantage becomes greater as the dynamics becomes greater, which implies that considering fuzzy demand and machine flexibility is necessary and reasonable in layout optimization, especially when the dynamics of the production environment is dramatic.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3