A Study on Axial Compression Performance of Large Diameter-Thickness Ratio Concrete-Filled Gas Drainage Steel Pipe

Author:

Liu Zi-Lu1ORCID,Ma Zhan-Guo1ORCID,Li Ye1,Gong Peng1ORCID,Li Ke-Long1ORCID,Liu Wang1

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

A large number of gas drainage pipes are obsoleted in the coal mine gas drainage system, and it causes serious waste. If concrete is poured into the discarded gas drainage pipes as components for underground roadway support, it is very significant for sustainable development of mine. Therefore, it is necessary to study the mechanical properties of the concrete-filled gas drainage steel pipe. Most frequently used gas drainage pipes are spiral welded steel pipe (SSP-I) and spiral external rib steel pipe (SSP-II). In this study, three different concrete-filled steel pipes are taken as the research object: SSP-I concrete-filled steel pipes, SSP-II concrete-filled steel pipes, and RSP concrete-filled ordinary round steel pipes. Through the axial compression test, the failure mode and relationship between stress-strain of concrete-filled steel pipes were obtained. Subsequently, the ultimate bearing capacity of three types of specimens was calculated based on the unified strength theory, limit equilibrium theory, and superposition theory. The test results show that both the SSP-I concrete-filled pipe columns and RSP concrete-filled pipe have good post-peak load-bearing capacity and ductility, and the second peak load reaches 70.38% and 81.92% of the ultimate load, respectively. The load-bearing capacity of SSP-II concrete-filled pipe columns is dropped sharply after bearing ultimate load, and the second peak load reaches only 36.47% of the ultimate load. The failure characteristics of concrete-filled gas drainage pipe columns show that the core concrete is compressed to powder and explain that the gas drainage pipe has fully exerted its restraint on the concrete. The FE method was used to simulate the compression test of three types of concrete-filled steel pipes, and the numerical simulation results show good agreement with the experimental results. Theoretical calculations show that the calculation of concrete-filled gas drainage pipe columns based on the superposition theory EC4-2004 is the closest to the measured value. Therefore, the EC4-2004 standard is recommended to calculate the ultimate bearing capacity of concrete-filled gas drainage pipe columns.

Funder

National Key Research and Development Projects of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3