Network Scalability for Ultra-Wideband Real-Time Location Systems Based on vMISO

Author:

Gao Qian12,Shen Chong12ORCID,Zhang Kun123

Affiliation:

1. State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China

2. College of Information Science and Technology, Hainan University, Haikou 570228, Hainan, China

3. College of Ocean Information Engineering, Hainan Tropical Ocean University, Sanya, Hainan 572022, China

Abstract

For time-based location systems, a common time base is important for obtaining the correct position. However, wireless clock synchronization is considerably easier to deploy in certain environments, such as large areas. A single-region positioning network is often restricted to the anchor communication range. Therefore, multiple master anchors form the basis of an extensible location network and provide an effective means of adapting the system to a complex propagation environment. In this article, we consider simultaneous network scalability with the relative clock synchronization and localization. We first establish an extendable UWB location system model through intelligent response across the routing layer and physical layer. Anchors act as master or slave anchors in different cluster areas and advance the clock check packet (CCP) from an initial region to the surrounding area to achieve clock synchronization of the entire network. The intracluster CCP transmission is achieved by broadcasting, and the intercluster CCP transmissions use vMISO and are automatically driven by the broadcast arrival time for better results. Furthermore, the physical-access and clock synchronization algorithms are discussed. Finally, location tests combined with routing simulations are conducted to demonstrate the performance of the proposed scheme.

Funder

Major Research and Development Plan of Hainan Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3