Collaborative QoS Prediction for Mobile Service with Data Filtering and SlopeOne Model

Author:

Yin Yuyu123,Xu Wenting1,Xu Yueshen4ORCID,Li He4,Yu Lifeng5

Affiliation:

1. School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China

2. Key Laboratory of Complex Systems Modeling and Simulation of Ministry of Education, Hangzhou, Zhejiang 310027, China

3. College of Electrical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China

4. School of Software, Xidian University, Xi’an, Shanxi 710071, China

5. Hithink RoyalFlush Information Network Co., Ltd., Hangzhou, Zhejiang, China

Abstract

The mobile service is a widely used carrier for mobile applications. With the increase of the number of mobile services, for service recommendation and selection, the nonfunctional properties (also known as quality of service, QoS) become increasingly important. However, in many cases, the number of mobile services invoked by a user is quite limited, which leads to the large number of missing QoS values. In recent years, many prediction algorithms, such as algorithms extended from collaborative filtering (CF), are proposed to predict QoS values. However, the ideas of most existing algorithms are borrowed from the recommender system community, not specific for mobile service. In this paper, we first propose a data filtering-extended SlopeOne model (filtering-based CF), which is based on the characteristics of a mobile service and considers the relation with location. Also, using the data filtering technique in FB-CF and matrix factorization (MF), this paper proposes another model FB-MF (filtering-based MF). We also build an ensemble model, which combines the prediction results of FB-CF model and FB-MF model. We conduct sufficient experiments, and the experimental results demonstrate that our models outperform all compared methods and achieve good results in high data sparsity scenario.

Funder

Zhejiang Provincial Natural Science Foundation

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3